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EXECUTIVE SUMMARY

Previously, t we have shown that neural networks trained only on intrapulse parameters can yield a level
of emitter identification (EID) accuracy comparable to what is currently achieved by experienced human
analysts. In this report, we have extended that study by using three conventional pulse parameters (pulse
repetition interval (PRI), radio frequency (RF), and pulse width (PW)) in addition to the intrapulse (IP)
parameters. We performed this study using the same data set as that used in our previous work. A test
scenario was set up involving 42 different emitters, all of the same make and model, with multiple collects
taken from each emitter under different circumstances. We first performed a statistical analysis to determine
how reliable all these parameters were for EID. We then performed a variety of experiments to examine how
much the accuracy of EID was improved by adding these conventional parameters. We explored both of
these questions using the simple Euclidean distance metric as well as two other distance metrics: Euclidean
distance with standardization, and Mahalanobis distance. We compared several different EID algorithms,
including Nearest Neighbor and SuperPHC, the favored algorithms, and two additional fielded algorithms.
The experimental results suggested ways that better ElID systems can be built, and are summarized as fol-
Iows:

Both conventional and intrapulse parameters vary from collect to collect, but are reliable enough
for EID. When the same emitter is collected under different circumstances, there is significant statistical
variation in the collected pulses. However, the variation between collects is much larger between different
emitters. Thus, the variation from collect to collect does not confuse ElID algorithms. This observation is
especially true when the parameter space is distorted in a statistically derived manner.

Using both conventional and intrapulse parameters improves EID accuracy. In all the experiments
performed, using both the conventional and IP parameters resulted in greater EID accuracy than did using IP
alone. The immediate implication is that baseline systems can have their automatic EID accuracy improved
by incorporating conventional parameter information in their matching algorithms. This statement is espe-
cially true when the pulse data are standardized.

Averaging pulses over a collect before EID yields equivalent EID accuracy. Baseline systems work
with pulse averages over entire collects rather than individual pulses. Our previous work suggested the
alternate approach for EID by first identifying every pulse in the collect, then taking a maj ority vote. Through
experiments and statistical analysis, we demonstrate here that no significant advantage is obtained by using
individual pulses for EID. Hence, the current baseline practice of working with pulse averages should be
maintained.

Standardization of data is required for higher EID accuracy. When data are in raw form. some
parameters have a larger variance than do other parameters. This is a result of the fundamentally different
methods in which different parameters are obtained. For example, pulse width is measured by a clock signal
while IP parameters are obtained from advanced signal processing. The magnitudes of the variances of each
parameter are thus meaningless. However, when such raw data are scaled by using a Euclidean distance
metric, those parameters with larger variance are given an unfair bias in the EID algorithm. To make the
most of all the available information, the data need to be standardized before being given to an EID algo-
rithm.

tG.L. Barrows, J.C. Sciortino, VC. Kowtha, and D.A. Stenger, Specific Emitter Identification Using Massively
Parallel Implementations of Neural Networks, Naval Research Laboratory Report NRL/FR'5720--96-9830, Sept.
1996.
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Standardization with categorical knowledge results in extremely high EID accuracy. We observed

EID accuracies in the 99% range when the data were scaled using categorical knowledge. This implies that

in mission scenarios where the emitters have been previously seen, use of the techniques developed in this

report will enable identification of these emitters with extremely high accuracy. The performance is not as

high when there are many previously unseen emitters in a scenario. Nevertheless, this result implies that

under certain types of mission scenarios, extremely accurate EID can be obtained.

Previous conclusions comparing SuperPHC and Nearest Neighbor are still valid when pulse aver-

aging and standardization are used. In our previous work,' we concluded that Nearest Neighbor is slightly

more accurate than SuperPHC, although SuperPHC is significantly faster in EID mode than Nearest Neigh-

bor. We observed the same behavior in this study, whether standardization was used, whether pulse averag-

ing over collects was performed prior to EID, or whether conventional parameters were used in addition to

intrapulse parameters.

vG.L. Barrows, J.C. Sciortino, V.C. Kowtha, and DA, Stenger, Specific Emitter Identification Using Massively

Parallel Implementations of Neural Networks. Naval Research Laboratory Report NRL/FR/5720--96-9830, Sept.
1996.
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ENHANCED EMITTER IDENTIFICATION USING SCALED CONVENTIONAL
PULSE AND INTRAPULSE (IP) PARAMETERS

1. INTRODUCTION

Emitter identification (EID) is an important task in today's military environment. The goal of ED is to
identify radio frequency (RF) energy sources by their pulse emissions. This is not a trivial task: identifica-
tion must be made from libraries derived from pulse samples taken from thousands of different emitters.
Most of these emitters are mass produced and differ only by serial number. Furthermore, the identification
problem is made more difficult because the pulse samples that make up a library are taken under varying
environmental conditions. Finally, mission demands require that EID be made within milliseconds, and be
robust to noise and distortion [1]. Recent advances in receiver, signal processing, and pattern recognition
technology have made significant progress in addressing these issues [2]. The different parts of an electronic
support measures (ESM) system that perform EID have become sufficiently modularized to allow flexible
development of specialized ESM systems.

As a result of ever more complex EW environments and reduced available human factors, there is a need
to automate various parts of an ESM system. A modest goal is to automate the pattern EID tasks currently
performed by an operator, thus freeing time to perform other tasks. A more aggressive goal is to automate
the entire ESM system. Through the use of artificial intelligence techniques, it appears that such an autono-
mous real-time ESM tracking and analysis system is within the state of the art [2]. This requires the use of
pattern recognition algorithms to deinterleave or separate pulse collects into individual emitter pulse trains.
The deinterleaved pulse trains are then used to characterize the emitters for comparison with library data.

To illustrate how ESM systems can be automated, consider the nature of pulse data to be analyzed: the
EID data consist of collections of pulses, each collection recorded by a single receiver over an interval of
time. Ideally, the pulses collected would all be from a single emitter. Such an instance is called a "collect."
However, depending on the exact filtering used and the current electromagnetic environment, a single col-
lect can contain pulses from multiple emitters. Before advanced identification techniques can be performed,
the incoming pulses need to be deinterleaved into separate sets representing different categories of emitters.
This is a tedious task for human operators, and is thus a prime area for automation. Next a set of descriptors
or parameters needs to be computed for each pulse category to allow comparison with previously collected
or library data. Typically these parameters include the pulse repetition interval (PRI), which is obtained from
the time of arrival (TOA), the carrier RF, the pulse width (PW) and, more recently, intrapulse parameters
(IP). The problem of matching collected data with library entries is also tedious and susceptible to human
error, thus is also a good area for automation. There has already been substantial work in using basic data-
base matching techniques for identification. However, the application of more advanced pattern recognition
and statistical techniques can significantly improve performance, as demonstrated in this report.

Previously, we have reported that by using only IP parameters, it is possible to automatically discrimi-
nate between emitters at an accuracy level comparable to skilled human analysts [3]. In that study, neural
networks were given a training set consisting of 800 pulses from each emitter, then tested on "blind col-
lects." which are defined as collects taken from previously seen emitters/modes, but not used in the training
process. We performed identification on each individual pulse of a collect, and then used a majority-voting
scheme to label the entire collect. This is different from the baseline approach of first averaging parameters
over an entire collect and then identifying the "average pulse." By identifying every pulse in a blind collect,

Manuscript approved April 12. 1999
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2 Yang et al.

and then taking a majority vote, the best algorithms were able to correctly identify the emitter source with

greater than 80% accuracy. This study demonstrated the feasibility of automating the identification task.

Recently, Sciortino et al. argued that using IP in conjunction with conventional parameters (RF, PW, and

PRI) could increase EID accuracy into the 95% to 100% range [4-6].

In this report, we extend our previous study [3] by incorporating conventional parameters (PRI, RF, and

PW). then challenging with data from the same field test. We also use two neural network classifiers (SuperPHC

and Nearest Neighbor) that were found to be the most successful algorithms in the previous work. We again

compare the performance of these two neural networks using the additional parameters. Finally, we compare

the results of the study with other identification algorithms. Overall, this study provides a theoretical basis

for analyzing and explaining the performance of both new and existing algorithms.

In baseline systems, the pulses are collected, processed, and then deinterleaved and identified as being

from a single emitter. The pulse parameters from each single emitter are then averaged. The averaged

features are entered into a library that forms a history of previously seen emitters. Effectively, the single

"averaged" pulse parameter set from each collect is normally used for the identification task. In our previ-

ous work, we took the alternative path of using individual pulses over a collect instead of the pulse average

[3]. In this report, we compare these two approaches (individual pulses and pulse-averaged collects).

The scaling of different parameters of data can also affect the EID accuracy [7]. If two parameters have

the same amount of information, but one parameter has a greater variance over the other, then the impor-

tance of that parameter may be improperly exaggerated, resulting in sub-optimal EID. To address this

problem, we standardized the data and used other scaling methods that standardize with respect to the varia-

tions within categories. We also explored the use of non-Euclidean distance measures to improve EID accu-

racy.

This report is organized as follows: Section 2 describes both the form of the pulse data used and the

experiments performed. This includes methods of preparing raw pulse data for subsequent experiments. We

then describe a number of EID accuracy experiments as well as a number of statistical tests performed on the

data. In order to rationalize some of the experiments performed or steps taken, examples are taken from the

pulse data. The overall purpose of this section is to acquaint the reader with the variety of methods of

manipulating the data and performing experiments.

In Section 3, we explore the question of how reliable the pulse data are for EID. Several case examples

are taken from the data sets. Then several statistical tests are applied to the data to assess their reliability.

Section 4 describes specific EID experiments and their results. First we describe the performance of

EID schemes using both conventional and unconventional parameters. Then we explore how scaling and the

use of Mahalanobis distance [8] can improve performance. A set of experiments is then performed to com-

pare the performance of baseline systems with newer proposed approaches. This set of experiments vali-

dates both a) the pulse collection process and the subsequent EID as done currently in the baseline system,

and b) the methods proposed in Refs. 3 and 4.

In Section 5. we discuss the experimental results and their significance. The implications for both future

research and future systems are outlined. The two appendixes describe the raw pulse data in detail. This

allows the reader to cross-reference data in described experiments with the raw pulse data. The date and time

of each collect, location, a conventional parameter from ground truth, and labels used for category genera-

tion (Category and ID) are all presented for the two subsets (short- and long-range modes) used in this study.

I



Enhanced EID Using Scaled Conventional and IP Parameters 3

2. BACKGROUND

This section describes both the form of the pulse data used and the experiments performed. First we
describe pulse data in detail, including methods of preparing the data for experiments. We then describe a
number of statistical tests used to analyze the data. Next we describe various distance measures that effec-
tively distort the pulse parameter space according to pulse statistics. Finally we describe the EID algorithms
used and the basic method for evaluating them. Examples taken from the pulse data are used to rationalize
some of the experiments performed or steps taken. The overall purpose of this section is to acquaint the
reader with the variety of methods of manipulating the data and performing experiments. We then provide a
mathematical description of the ensuing experiments on scaling and categorical knowledge.

2.1 EID Algorithms

Nearest Neighbor and SuperPHC (Supervised Piriform Hierarchical Clusterer, Thuris Corporation, Irvine,
California) are the primary EID algorithms used in this study. They have been described in detail earlier [3].
These algorithms are used in the majority of the experiments because they can be flexibly implemented to
handle a variety of data representations. SuperPHC ran on a Sun Ultral Model 200 workstation. We imple-
mented the Nearest Neighbor algorithm using Borland C compiler V5.0 (Borland International, Scotts Val-
ley, California) on an IBM-compatible personal computer. The two other matching algorithms currently
deployed are the Matching Algorithm [9] and the normalized Euclidean metric [10]. These methods are
designed to operate on the intrapulse parameters. We did not attempt to fit the conventional parameters into
the normalized Euclidean metric or the Matching Algorithm because those measures are not designed to be
applied in that fashion. The Matching Algorithm and the normalized Euclidean metric generate match num-
bers, but we used them here only as a metric for a nearest neighbor network, which simplifies the algo-
rithms. In this study, these algorithms are only used in the final comparison between baseline systems and
the algorithms explored here (Nearest Neighbor and SuperPHC).

2.1. 1 Nearest Neighbor

Previously, Nearest Neighbor was shown to be an effective algorithm for this EID task [3]. Nearest
Neighbor is a simple, brute force, nonparametric method of pattern EID. In this algorithm, the training set
vectors simply form a "prototype memory." Finding the closest vector in the prototype memory and assign-
ing the unknown vector to the corresponding category identifies a test or unknown vector.

2.1.2 SuperPHC

SuperPHC is a biologically inspired neural network algorithm that is derived from simulations of the rat
olfactory bulb and olfactory cortex [11,12]. It builds a tree to hierarchically partition the input vector space
according to the statistical structure of the training set. If an individual category is located distant from other
categories, a single partition may represent that category. If more categories are very close or overlapping,
SuperPHC divides that area into finer and finer partitions until each category is separated. A new vector is
identified by first locating it in one of the root-level partitions, then locating it into finer and finer partitions
until the category of the vector is determined.

2.2 Data Description

The test data have been extensively analyzed [3, 13]. The objective of the test was to determine the
effectiveness of current EID technology for identification and reidentification of small boat radar systems.
A deliberate selection of many emitters having similar conventional parameters made it especially difficult
to deinterleave and identify these emitters by conventional means. Most of the emitters used in the test were
inexpensive, low-powered radars, 46 of which were identical models: the Raytheon R41X (Raytheon,



Framingham, Massachusetts). We used only the data collected from these systems for our tests. Thus the

data used in this report simulates a difficult task very relevant to real-world environments. In fact, it can be

said that the EID tasks simulated here are more difficult than what would be pursued in many mission

scenarios.

Data sets consisted of two distinct parts, corresponding to different modes of operation for the emitters.

Long pulses contain more energy and thus are used for long-range settings, while short pulses are used for

local range settings. These two parts consisted of short- and long-range mode data. For the long-range

mode data, there were 40 different emitters of the same make, differing only by serial number, comprising

152 collects of data taken during 12 days of the single emitter test. Note that the word "emitter" serves the

same purpose as the word "category" in the context of this report. For the short-range mode data, there were

42 distinct emitters of the same make, comprising 163 collects of data. The pulses in the shorter-range

setting tend to be shorter to allow more accurate determination of location. The pulses in the longer-range

setting tend to be longer to allow more energy, hence range, per pulse. In these experiments, we treated the

two subsets separately without loss of generality since data from the two subsets can be binned by size.

Each collect consisted of 896 pulses containing PW, TOA, RF, amplitude and intrapulse parameters. In

this study, we used three conventional (PW, RF, and PRI) and 15 of the intrapulse parameters. Appendixes A

and B list the data sets (42 and 40 categories respectively of short and long-range mode data) based on

ground truth information [ 13]. In a prior study [3], emitters were found to be easier to recognize using long-

range mode data than from the short-range mode data. This observation has also been made in another

analysis of this data [13]. Rather than focus on just the long-range mode pulses, we chose again to use both

sets because they contain pulses from most of the radars present in the test.

2.2.1 Removal of Outliers

The raw data sets contained stray pulses that needed to be filtered out before processing. In standard

practice, one removes outliers by computing the mean of the set of data, then finding points farthest from

this mean and removing them or substituting the outlying values with mean values or extreme values. It is

appropriate to filter out these pulses before the ensuing experiments because these outlier pulses generally

are instances in which severe multipath corrupts a single pulse or in which the radar antenna was not pointed

directly at the receiver. Because the physical process that generates these outliers is significantly different

from that which generates the statistical structure of the data cluster, and because these outliers are so easily

removed, the analysis performed here is not compromised by removing these outliers.

To preserve the statistical information while removing outliers, we defined a neighborhood outlier re-

moval function. As a distance measure, we used a Mahalanobis distance (described below) with a covari-

ance matrix that is an average covariance matrix of all the collects. Within each collect (896 pulses), we

found the Mahalanobis distance between each individual point and all other points in the collect. We found

the Nm nearest neighbor to each point in the data, where N was the neighborhood size. The distance was

noted for each point and then sorted, keeping track of each point and its associated distances. The points

with the greatest distances associated with them were removed, leaving the desired fraction behind.

Experimentally, the removal of outliers had little effect on EID accuracy. It was only detectable in the

pulse-by-pulse case, where it boosted the EID accuracy of individual pulses up to 10% but did not affect the

EID accuracy after majority voting.

2.2.2 IP Parameters

Sixteen numbers represented the IP parameters. The first number is an offset term and not relevant to

EID, so we ignored it. We used the remaining 15 IP parameters in our experiments.

Yang et al.4



Enhanced EID Using Scaled Conventional and IP Parameters

2.2.2.1 Pulse Repetition Interval (PRI)

Before removing outliers from the data, we calculated the PRI. The process of extracting PRIs from the
data begins by converting the time of arrival (TOA) data to delta time of arrival (DTOA) data. The TOA of
a pulse is the time instant of the rising edge of the pulse. We discarded the first pulse, and for each following
pulse computed the DTOA by calculating the difference between its time of arrival and the time of arrival of
the previous pulse. Clusters were found in this distribution of DTOAs (when plotted on a histogram), and
the locations of these clusters formed the PRIs. The clusters that were found in the distribution of DTOAs
were either the PRIs or harmonics of the PRIs. Harmonics occurred when individual pulses were not inter-
cepted and the resulting interval was the sum of two or more ideal DTOAs. The harmonics were then
recognized by the fact that they are always more than twice the time duration of the shortest PRI. For
simplicity, the harmonics were discarded. Figure 1 is an outline of the algorithm used to extract the PRIs.

Fig. I - Flowchart for finding PRI from time of anrival (TOA) data

2.2.2.1.1 PRI Radius - The specific make of emitter used in this test had two PRIs for each mode of

operation. For the short-range mode pulses, the two PRIs (legs 1 and 2) were approximately 340 gLs and 520

ts. For the long-range mode pulses, the two PRIs were approximately 1100 JIs and 1500 jis. The specific
values of the PRIs varied slightly for each specific emitter. However, we observed that there was a linear
relationship between these two PRls (Fig. 2). In fact, the correlation between the PRIs exceeded 0.9999 and
all PRIs were observed to follow this relationship:

4
PRI2 = - PRI1 .

3
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Fig. 2 - PRIs of the 42 emitters present in (a) the short-range mode (161 collect points overall) and 40 emitters present in (b) the

long-range mode (1 53 collect points overall)

The close correlation between the PRIs would cause a covariance matrix that includes both PRI, and
PRI2 to be essentially singular. This prevents the use of both PRIs in a Mahalanobis distance metric. There-

fore, we chose to represent PRI in the pulse-averaged experiments by a single parameter, the PRI radius:

PRIRad,,,s = PRI±PRI .

2.2.2.2 Radio Frequency

RF is a straightforward addition of the intermediate frequency (IF) term for each individual pulse and
the tuned RF of the receiver. For more discussion on the computation of the IF term of each pulse, refer to
Refs. 3 and 13. We defined the RF of each pulse as the sum of the receiver's frequency and the pulse's IF

term. We used this reconstructed pulse RF as our data measurement for training and EID.

2.2.2.3 Pulse Width

PW, unlike the RF and the PRI, is a measurement that requires no special preprocessing. The PW is the
time duration between the rising and falling edge (-3 dB points) of the pulse. We use PW directly in our EID

tasks.

2.2.3 Statistical Analysis: H-test of Kruskal and Wallis

As described above, many collects from the same emitter can be obtained but with each collect taken

under different environments. This is certainly the case with the MD-Il data set (see Appendixes and Ref.
13). One important consideration is that of how much the statistics of each individual collect vary when
taken under different circumstances and how this variation affects EID accuracy. To address this, we use the
H-test of Kruskal and Wallis [14]. The H-test computes the likelihood that different clusters (here collects)
of data were generated by the same statistical function [14-15], assuming this function is a joint Gaussian

6



Enhanced EID Using Scaled Conventional and IP Parameters 7

distribution. In our case, we wish to examine the homogeneity of data taken on the same emitter, but in
different collects. We hypothesized that different collects from the same emitter should statistically appear rn

to be from a common population and therefore pass the H-test.

To perform the H-test, we first calculated the rank sums over the different samples by pooling the data
from each sample into a common population. We then sorted the data and found the position or rank of each
piece of data within that common population. Ties were resolved by averaging the ranks over which the ties
occurred and assigning that average value to each element in the specific tie. We then separated the data into
the different original samples and summed the ranks assigned to each data point over each sample, forming
a rank sum for each of the original samples.

The variance of these rank sums formed a chi-square distribution with N-] degrees of freedom where N
is the number of samples. In the H-test, we formed the following hypotheses:

Ho: Pulses from the same emitter from one collect to another come from the same population.
Ha: Pulses from the same emitter from one collect to another come from different populations.
Ho and Ha are exhaustive.

Under the null hypothesis, Ho, the test statistic (shown below) has a X2 distribution with k-I degrees of

freedom. Ho is rejected whenever k > Xk-_;,, where ac is the significance level.

H [12l).[Ruj- 3(n+l)

Zkt? -ti
t3 

n -n

where k is the number of samples;
RI is the sum of the ranks of the F1 sample;
n is the number of data points in the ith sample;
n is the total number of data points over all k samples;
t. is the number of ties in the i'" tie; and
r is the total number of ties.

Hc0n is a correction that should be used if ties occur more than 25% of the time, which will occur in our case

because of the discrete nature of the data. In our analysis, we use one maximum significance level where the
null hypothesis is not rejected.

2.3 Scaling and Mahalanobis Distance

This section deals with the different choices of scaling possible, and with using a distance measure other
than Euclidean for the classifier. As a baseline, we use the simple Euclidean distance for EID. We then
modify the distance measure by effectively distorting the pulse parameter space in a statistically derived
manner that should improve EID. We discuss these methods in the following paragraphs. These methods
include standardizing the data, using the Mahalanobis distance [12], using categorical knowledge, and fi-
nally variants that combine these methods. In all cases, the scaling factors and covariance matrixes are
computed using the training data sets.



2.3.1 Standardization of Data

The process of standardization operates on individual parameters by resealing each parameter so

that the mean is zero and the standard deviation is unity. This removes the unfair bias in the distance mea-

sures given to parameters with a large variance. Each parameter is resealed independently of the rest, then

the simple Euclidean distance measure is used. Alternately, as described in the equations below, the distance

measure itself is modified to gencrate the same result, with d,, the resulting distance measure:

i,=

n

E (X1k - 2

(2 -il
n-I

d2 M (Ak Xjk)
ik2

where n is the number of vectors; M is the number of elements in each vector;

C7 is the i1' data vector; Ui is the mean vector:

CfLi is the kt' element of ith vector; Gi is the Pth element of mean vector;

UL is the variance of kP vector element; aL, is the distancc2 between vectors i andj

2.3.2 Mahalanobis Distance

The Mahalanobis distance is a distance measure that stretches the parameter space according to the

covariance matrix of the data set. Qualitatively, the Mahalanobis distance is similar to the standardized
distance described above except that it is expanded to include second-order statistics between two param-

eters. In fact, if the parameters are independent according to second-order statistics, the covariance matrix is

diagonal and the Mahalanobis distance gives the same result as the standardized distance above. Note that

for the Mahalanobis distance to be used, the covariance matrix must be well behaved, i.e., invertible numeri-

cally:

Pi

n

C =~~X i ) (

CX i= n-l

d2j = (ij- j), X CX- X (ij - ij

where aL, is the covariance matrix.

Yang et at.8
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2.3.3 Use of Categorical Knowledge

We computed the individual scaling factors and the covariance matrixes over all pulses in all collects of
the training sets. This method is not necessarily optimal because the locations of different pulse collects in
parameter space dominate the statistics of each individual collect. Alternately, one can compute these statis-
tics by including categorical knowledge. Qualitatively, this is performed as follows. For illustration, sup-
pose our data set consists of two collects from the same emitter and we wish to compute the variance.
Furthermore, suppose the pulses of each collect were generated using a Gaussian distribution. If we were to
not use categorical knowledge, then we effectively merge these collects into one larger set, compute the
mean of that larger set, then compute the variance from the distances between all the pulses and the resulting
mean. The sum of distances squared, divided by the total number of pulses, would form the variance. If we
were to use categorical knowledge to compute variance, then one mean for each of the collects would be
first computed. The variance would then be computed by summing the squares of the distances between
each pulse and the mean of the collect it came from, then dividing the sum by the total number of pulses in
both collects. Thus, if the two collects were individually tight around their respective means, but the two
means were separated, the computed variance using categorical knowledge would still be small. The com-
putation of the covariance matrixes for the Mahalanobis distances is essentially the same.

2.3.4 Standardized with Categorical Knowledge

The first of the variants is called "standardized with categorical knowledge." In this scaling scheme, we
took all the data sets and found all the emitters for which there were more than one collect of data taken. We
then took these emitters and found the scaling factors of their parameters over their collects. Then we aver-
aged the standard deviations over all emitters. Finally, we used these scaling factors as standardizing scale
factors in our distance measure. Assume that we have a distribution of data with L categories. Each category

will have a number of vectors, a,, . Let a. denote the ]' vector of the Ph category. Also, let UL, denote the P'

element of the jth vector of the itl category. Let CL denote the scaling factor for dimension k. Finally, let ah

denote the mean of the Ph category and rb the kwih element of the Jh mean vector. Let ULi denote the distance

between vectors i andj.

EXz- Iil

n,

(E I )2

Sk I

22 a , I-X} Al

k=1 Sk

2.3.5 Mahalanobis Distance with Categorical Knowledge

In our second variant, Mahalanobis distance with categorical knowledge, we first found the scaling
covariance matrix for each category of data. Next, we calculated an average of this covariance matrix and
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used it as a general covariance matrix for describing all of the collects. This covariance matrix was used in

Mahalanobis distance computations. The notation is the same as above, with aLi being the scaling matrix.

n,

n,

LL

Ed E (iX- j) X/ )c X (Xij - Xl )

SCI = / i

2.3.6 Generalization of Scale Factors

Our practice here of using all the data to generate the covariance matrix for our classifier is unrealizable

in practice because we will not know categories before we identify the data, although it was necessary in our

previous experiment. In reality, only a fraction of all possible emitters can be used to form such covariance

matrixes or scaling factors because new emitters will appear and their statistics cannot be known a priori.

Therefore it is necessary to study the effects of using such categorical knowledge when it is derived from a

subset of all the collects. This is studied in detail in Section 4.

2.4 Matching Algorithm

Since we were only using a nearest neighbor network instead of generating a match number, the match-

ing algorithm simplifies to

d2 15 (ViVL )2 15
d2 =S , L;)X JALF

where a, is the standard deviation of the library coefficient, uD is the mean of the i" library coefficient

across all signals used to make the entry, and ad is the mean of the ill coefficient across all signals in the

collect [10]. We simply used d as our distance measure in our nearest neighbor network.

2.5 Normalized Euclidean Metric

Again, we only used this metric as a distance measure for our nearest neighbor network. The notation is

the same as above in Ref. 6.

15

2,(v vL,)

15 1l5

I v 2 X~l V i,

I
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2.6 Jackknife Evaluation

The BID accuracy experiments were conducted using the "jackknife" network strategy. Jackknifing is
useful for evaluating an EID scheme. In jackknifing, we remove a single data point from the data set and
build a classifier using all the remaining data. We then use the resulting classifier to identify the original data
point that we removed. The experiment is repeated for all points in the data set. The main advantage of
jackknifing is that the EID accuracy obtained is less dependent on the specific collects used to form the
training and testing sets in individual trials.

3. STATISTICAL RELIABILITY OF CONVENTIONAL AND INTRAPULSE PARAMETERS

One question that needs to be addressed is the statistical reliability of the parameters used for EID.
Clearly within each collect there is statistical variation ofthe pulses due to the random noise that corrupts all
signals. However, statistical variation between different collects of the same emitter has been observed.
These variations occur because such collects were typically collected under different circumstances and
environmental conditions. The important question is whether this variation is significant enough to prevent
accurate EID. This section addresses this question by examining the relevant statistics. First we look at
several cases of variation between different collects of the same emitter. Then we perform the H-test on the
grabbed data to determine if it is statistically likely that such different collects came from the same emitter.
Finally, we compare the variation between collects of the same emitter with variation between collects of
different emitters.

3.1 Case Examples

First we consider examples of how the statistics vary among different collects of the same emitter.
Figure 3 shows the relative distribution of two intrapulse parameters (Al and B11) of 43 collects from two
different emitters (categories 9 and 33 from short-range mode collects; categories 1 and 8 from long-range
mode collects). Individual collects form a category-dependent cluster in the Al--B space. However, at least
one category 8 collect overlaps with 18 category 1 collects (Fig. 3, left panel). This overlap would cause

21 80

20 . 90

1910 

18A ~~~ * ~~~~~~110 'A A
17 A 'A

2120 A
16 X:

A

4 .-=-- .... - :~~~~ 140 :4
13 150

12 160
25 20 15 10 5 100 90 80 70 60 50

Al Al

(a) (b)

Fig. 3-Distribution oftwo intrapulseparameters (Al and Bl, mean and one standard deviation represented by four symbols and
dotted lines, respectively) of 43 different collects for (a) long-range mode data (18 collects from category I and 7 collects from
category 8), and for (b) short-range mode data (13 collects from category 9 and 5 collects from category 33)



errors in an EID algorithm. The overlap is severe in the short-range mode data (Fig. 3, right panel): note that

all category 9 collects fall within category 33's cluster space. An emitter identification scheme acting on this

data would not be able to discriminate these two emitters using these parameters. Note that parameters Al

and BI shown in the figure are generally regarded as the most reliable parameters for emitter discrimination

[4]. This observation is supported by an earlier study, in which we showed with information theory that these

parameters are among the best of the intrapulse parameters for EID [3].

Figure 4 presents an example of how there can be variations between different collects of the same

emitter. This IP variation is also evident from two collects of the same emitter taken minutes apart. Figure 4

shows an example of Al parameter variation from one of the above emitters (category 1, long-range mode

data, Appendix B) from two different collects that were collected 94 min. apart from the same site. The first

collect has a mean of 15.1 forAl, but the second collect has a mean of -12.0 forAl. The means are actually

more than one standard deviation apart from each other using the standard deviation from either collect.

These means are statistically different even at the 0.001 significance level according to the T-test. Such

variation is not limited to IP coefficients. Figure 5 shows changes over the 12-day MD-I1 test period in five

intrapulse parameters and three conventional parameters. These plots were generated using the same cat-

egory I data in the long-range mode data shown above in Figs. 3 and 4. These plots show that the distribu-

tion of both sets of parameters varied during the 12 days of the MD-lI test period. The variations are promi-

nent in the first two days of collects and stabilized with time.
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Fig. 4 -Two histograms of parameter AI of an emitter (>800 pulses each) from long-range mode for (a) category I, collect 2, and
(b) category 1, collect 16, from the same site recorded 94 min apart on day one of the test
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3.2 H-test of Kruskal and Wallis

Figure 5 shows examples of how the conventional and intrapulse parameters might vary between emit-
ters. Here we perform a more quantitative analysis using the H-test, which is described in Section 2.2.3. The
H-test looks at multiple distributions of data points and computes the likelihood that these distributions
come from the same "population," or from the same emitter in the context of this study. The H-test works by
ranking the data from the different samples and comparing the average ranks for each sample. We expect
that if the collects were from the same population that the ranks would be fairly evenly distributed over the
different collects.
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Fig. 5 Variation of PRI, RF, PW, and five intrapulse parameters (AI -A3, B I -B2) with time in the IS
collects made (1-12 days of category 1, long-range mode, Appendix B)
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Table I shows the probability distribution using H-test for the 17 parameters (RF, PW, and 15 IP param-

eters for both short-range and long-range data) studied. The probability value of -1.0 indicates that the

alternate hypothesis is correct (i.e., pulses from the same emitter from one collect to other come from differ-

ent populations). With an overall average of 96.9% certainty, the distributions formed by the pulses of

different collects of the same emitter do not appear to be samples from the same emitter. These results imply

that pulses from different collects of the same emitter do not form a single homogeneous population in a

statistical sense. It should be noted, however, that further analysis shows that this intraemitter variation

(examined below) is significantly less than the variation between emitters. A secondary implication is that

no significant advantage is obtained by using single-pulse data. Thus, it is just as effective to use pulse

averages over collects of the conventional and intrapulse parameters as it is to retain the original pulses.

Therefore, a single data point can be used to represent an entire collect without sacrificing EID accuracy

Table 1 -Probability Distribution Using H-test

Long-Range [ Short-Range I

3.3 IP Parameters Distance Variation Between Different Emitters

In this section, we compare the intercollect variation within emitters with the variation between emit-

ters. Qualitatively, if the variation of collects between the same emitter is less than that between different

emitters, then the pulse data contain enough information for identification. This study is performed as fol-

lows: first we compute all of the distances between the different collects. Then the distances resulting from

different collects of the same emitter are placed in one set, while the distances resulting from different

collects of different emitters are placed in a second set. Overall, the 314 collects from short- and long-range

mode data yielded 423 and 444 same-category distances and 12,618 and 11,032 different-category dis-

tances, respectively. These two sets of distances are then each plotted in a histogram. All three distance

measures used throughout the report (standardized scaling, standardized scaling with categorical knowl-

edge, and Mahalanobis distance with categorical knowledge) are evaluated using the following formula:

d2 In Lf A,,At)d 2

RF >0.999 0.9965
PW 0.9635 0.9966

Al >0.999 0.9956
A2 0.9790 0.9823
A3 0.9659 0.9894
A4 0.9548 0.9817

A5 0.9898 0.9801
A6 0.9415 0.9735
A7 0.9400 0.9924
A8 0.9581 0.9836
B I 0.9985 0.9940
B2 0.9845 0.9980

B3 0.9439 0.9907
B4 0.9409 0.9934
B5 0.8686 0.9636

B6 0.9058 0.9657

B7 0.8958 0.9918

Yange et al.1 4
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For standardized scaling, jtand W7are averages and standard deviations, respectively. For standardized
scaling with categorical knowledge, the caT, is the diagonal of the covariance matrix. Finally, for Mahalanobis rim

distance with categorical knowledge, the a.is formed from the inverse covariance matrix. The percent over-
lapping distance between the same and different collects is then computed. For clarity, only the number of
instances of different emitters overlapping with same emitter collects is considered here. Next, a percentage
of overlap (number overlapped as a function of more than 10,000 different category instances) is computed
for all the metrics used for the two subsets of data.

Figure 6 plots the variations in IP distance between (a) the same and (b) different category collects for
long-range mode data. The computed distance was greater than 1.8 in 36 instances of same category collects
and was less than 1.8 in 970 instances for different category collects (less than 9% overlap). Thus, the
computed IP distances between collects of the same category and collects between different categories form
two different distributions with a small overlap. This formation of two different distributions for the same
and different category collects suggests that IP parameters can be used to effectively discriminate between
emitters. The overlap for the short-range mode data was twice as high (more than 20%) for different cat-
egory collects (figure not shown). For short-range mode data, ETD using 1 5 IP parameters was less than 60%
(see Section 4). This is due to a larger overlap (greater than 20%) between the same and different category
collects. Note that the overlap is reduced with scaling and is discussed elsewhere (see Section 4).
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Fig. 6 - Distribution of IP distance between same category collects (a) and different category collects (b) for standardized long-
range mode data (152 collects, 444 same category variants, and 11,032 different category variants)
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Figure 7 illustrates the overlap between intraemitter and interemitter distances. The overlap is higher in

the short-range mode data for all three types of scaling used in the present study. However, the overlap drops

off significantly with scaling. Note that when using standardization with categorical knowledge, the overlap

falls below 1% but is never 0%. The overlap drops further when the Mahalanobis distance with categorical

knowledge is used. Thus, the collects vary in intrapulse and conventional parameter space but form distinct

distributions with minimal overlap. These results are consistent with the EID accuracy results obtained

above.
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Fig. 7 - Percentage of overlap observed in >10,000 different-category distances with same-category distances for the three
different measures used in the short- and long-range data, respectively.

3.4 Conclusion

There are two main implications of the above set of experiments. The first implication is that there is

enough variation between different collects of the same emitter to make these collects statistically different.

This was observed in the case examples and demonstrated quantitatively using the H-test. The second impli-

cation, however, is that this intraemitter variation is significantly less than the variation between collects of

different emitters. Therefore, the data form used here is sufficient for emitter identification.

4. EID EXPERIMENTS

In this section, we discuss a set of experiments performed to analyze the structure of the data. The first

set of experiments directly expanded our previous work [3] by using both conventional and IP parameters

for EID, rather than just IP parameters alone. The second set of experiments compared the use of pulse
averages over collects with individual pulse data for EID. The third set of experiments examined the use of
scaling and Mahalanobis distance. The fourth set of experiments compared the different EID methods ex-

plored here. This included a comparison of Nearest Neighbor and SuperPHC with currently deployed sys-

tems.

16
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4.1 Use of Both Conventional and IP Parameters for EID

This first set of experiments explored the use of both conventional and IP parameters for emitter iden-
tification. Three conventional parameters (PRI, RF, and PW) were used in EID. along with the 15 IP coeffi-
cients. This experiment is similar to our earlier work [3] except that here we also used conventional param-
eters, and pulse averages over collects were used in place of first identifying individual pulses then taking a
majority vote.

4.1. I Method

The Nearest Neighbor algorithm using Euclidean distance was used for EID. Data from both the short-
and long-range mode collection were used. The short-range mode contained 42 different emitters in 163
collects, while the long-range mode contained 40 different emitters in 152 collects.

Experiments were performed independently for each of these data sets. A single pulse average was used
to represent a single collect. A single trial was performed as follows: one collect was randomly selected to
represent each emitter in a "training" set. The remaining collects were used to form the "test" set. Thus, for
a trial using the long-range mode data set, there were 40 training collects and 112 testing collects. Likewise,
for a trial using the short-range mode data set, there were 42 training sets and 121 testing sets. Next, we used
Nearest Neighbor to identify the test set in both modes. The percentage of collects correctly identified
resulted in an accuracy score for the single trial.

In all, 200 trials were performed for each of the data sets. The accuracy scores were averaged over these
200 trials. This process was repeated a total of 16 times, one for each possible permutation of use or nonuse
of the four parameters (three conventional parameters with IP treated collectively as one super-parameter).

4.1.2 Results

Table 2 describes the identification accuracy of the Nearest Neighbor algorithm using the raw pulse
averaged data as we used or ignored different parameters. Similar results were obtained with SuperPHC.
The upper table shows long-range mode data set results while the lower table shows short-range mode
results. Two-bit words describing the presence or absence of the four parameters (PW, IP, PRI, and RF) label
the rows and columns. Higher performance was realized as more parameters were added. Where we used
zero parameters for EID, we defined accuracy as that of pure guessing chance, which is respectively 1/40
and 1/42 for the long- and short-range mode data sets.

Table 2- Percentages Correctly Identified in the Long- and Short-Range Modes

I PRI/RF (Long-range) I
00 001 I l] I 0

00 2.5% 22.1% 4 742 46.1 |
PW / IP 01 71.9% 81.3% 92.4% 85.9%

1 1 77.8% 85.3% 93.5% 89.2
10 14.8% 52.3% 82.6% 56.2

PR /RF (Short-range)

00 01 I 11I 1 10 I

00 2.4% 26.6% 46.6% 39.1%
PW / IP 01 57.6% 60.8% 60.8% 57.6%

1 1 57.7% 61.3% 60.6% 57.0%
10 5 -_2%_ __ 30.7% 35.7% 15.9%



In the long-range mode, Table 2 tabulates the results of Nearest Neighbor using a plain Euclidean

distance and pulse-averaged data. Each percentage displayed is an averaged accuracy over the 200 random

perturbations of 40 training collects and the 112 blind test collects. As shown in the table, use of conven-

tional parameters improved the accuracy by 21.6% compared to that of using the IP itself (93.5% vs 71.9%).

Use of PRI alone enabled only 46.1% of the data to be identified correctly. Using RF alone, 22.1% of the

data could be identified correctly. Pulse width was the least useful single parameter; it enabled us to cor-
rectly identify the emitter only 14.8% of the time.

The results in the short-range mode data are different from the results in the long-range mode data, The

accuracy is lower in all the experiments and we see much less improvement with the addition of conven-
tional parameters. For example, using IP alone we were able to identify the collects with 57.6% accuracy,

increasing to only 60.8% when we added all of the conventional parameters. This contrasts with the long-
range mode data, which improved from 71.9% accuracy to 93.5% accuracy when we added the conventional

parameters.

For both data sets, the IP parameters appeared to contain the most information pertinent to EID, fol-

lowed by the PRI information, and the RF information. The PW parameter was the least useful. This is easily

seen in Figs. 8 and 9, which show clusters formed by individual parameters when taken from the 152 col-

lects of the long-range mode data. Qualitatively, it can be seen in Fig. 8 that the PRI forms tighter clusters

than does either the RF or the PW parameters.

4.2 Comparison of Single-Pulse and Pulse-Averaged EID

Next, we determined the EID accuracy attainable by using individual pulses and pulse averages. This

was to verify the prediction from the H-test, above, that using individual pulses rather than pulse averages
should not significantly improve EID accuracy.

4.2.1 Method

All of these experiments were performed with standardized data, rather than raw data as in the previous

experiment. Both the Nearest Neighbor and SuperPHC algorithms were used. All three unconventional

parameters and the IP parameters were used. We also followed the above method of randomly forming
training and test sets from the data, and then identifying the test sets with the training sets. EID accuracies

from a number of such trials were averaged to generate an overall EID accuracy. For the pulse-averaged

data, 200 trials were performed, exactly as in the previous experiment. However, for the single-pulse data,

the method had to be slightly varied due to the differing nature of single-pulse data.

In the single-pulse case, the training set was formed from all the pulses of the selected training collects

of a trial. Then test collects were identified as follows: each pulse in a collect was first identified, then a

majority vote was taken to choose the category of the entire collect. This method is the same as that followed
in our previous work [3]. Only six trials were performed for the single-pulse case rather than 200. This is
because the training and testing sets were each two or three orders of magnitude larger than those generated

in the pulse-averaged categories, resulting in extremely CPU-intensive experiments.

Another variation that had to be made for the single-pulse experiments was the method of including
PRI, which requires the use of multiple pulses to be meaningful. Here, we just used the single DTOA
associated with each pulse in place of PRI. The first pulse of each collect was discarded because it had no

meaningful DTOA.

Yang et al.18
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Fig. 8-Distributions of four parameters (PRI, RF, PW, and lP parameter Al) for long-range mode data as sorted by the respective
parameter means over the overall 40 categories. Thus, category I depicted here in each of the four panels does not ncccssarily
represent category I in Appendix B. Also, only one IP parameter (Al) is represented in the figure.

4.2.2 Results

Table 3 shows a summary of the results. The EID accuracy overall, for both data subsets, improved
from 72% [3] for unconventional parameters to 85% with the addition of the conventional parameters using
SuperPHC when tested per pulse. The objective of the next experiment was to compare the EID accuracy
attainable using pulse-by-pulse data vs pulse-averaged data. Note that these data are not directly comparable
to Table 2 because here we used standardized data instead of the raw data.

Table 3 - EID Percent Accuracy Using Standardized Data

Mode Nearest Neighbor SuperPHC

Averaged Per Pulse Averaged Per Pulse

Short-range mode 74.8% 77% 71% 73%
Long-range mode 94.0% 94% 90% 95%
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When using the Nearest Neighbor algorithm, the accuracy using pulse-by-pulse EID was 2% higher
than when using pulse averages. The accuracies were the same with the long-range mode data. This is a
collective gain of 1%, which is not significant. The improvements were 2% when using SuperPHC. This is
only a slight improvement, and if it were statistically significant, one would have to determine whether this
slight increase in accuracy is worth the four to six orders of magnitude increase in computational complex-
ity. The reader should note, though, that when using pulse-by-pulse EID, these high accuracies were ob-
tained only after the majority vote. The actual EID accuracy was quite low, on the order of 60%. Overall,
these results imply that the use of pulse averages for EID is essentially just as good as using pulse averages
followed by majority vote. These results are consistent with the results of the H-test described above.

4.3 EID Accuracy Using Scaling and Mahalanobis Distance

Above we demonstrated that better EID accuracy can be obtained by using both conventional and IP
parameters for EID, and that pulse averages are basically as effective for EID as single pulses. Here we
further extend our work by using standardization and Mahalanobis distance rather than the simple Euclidean
distance metric.

4.3.1 Method

These tests were performed by using both conventional and IP parameters in the same manner as above:
one collect from each emitter was placed into the training set while the remaining collects formed the test
set. The Nearest Neighbor EID algorithm was used. Pulse averages over entire collects were used. A total of
100 trials were performed for each case being tested. The EID accuracies obtained with the individual trials
were averaged to form a final score. Tests were performed with raw data, standardized data, standardized
data with categorical knowledge, data using the Mahalanobis distance, and data using Mahalanobis distance
and categorical knowledge. In each trial, the statistics of the training set were used to form the scaling
factors and the covariance matrix for the Mahalanobis distance.

Also, for four of these cases (all except Mahalanobis distance), overlaps between intracategory dis-
tances and interemitter distances were computed much in the same manner as in the previous section.

4.3.2 Results

Table 4 shows the EID results obtained from a test of Nearest Neighbor neural networks using different
distance measures. Using raw data, we found that for the long-range mode data, Nearest Neighbor identified
the data with 93.5% accuracy However, with the raw short-range mode data, the accuracy was only 60.6%.
The accuracy improved when we standardized the data by 14.2% for the short-range mode data, but by only
0.5% for the long-range mode data. Using data that were standardized with categorical knowledge, the
accuracy was 93.3% for the short-range mode data and 98.5% for the long-range mode data. By standardiz-
ing the data, the Nearest Neighbor algorithm achieved a collective accuracy of 96.3% (by combining results
from both subsets). When the data were identified with Nearest Neighbor using Mahalanobis distance in-
stead of Euclidean with the covariance measured over the entire data set, the EID rates were both around
59%. When covariance matrixes were generated with categorical knowledge, the EID accuracy substan-
tially improved to 98.5% for the short-range mode data and 100% for the long-range mode data. Clearly,
categorical knowledge is necessary when using Mahalanobis distance.

4.4 Generalization of Scale Factors

Our practice here of using all the data to generate the covariance matrix or the scaling factors for our
classifier is unrealizable in practice because we will not know categories before we identify the data, which
was necessary in our previous experiment. Thus the above experiments do not address cases when new,
previously unseen emitters are exposed. Here we explore how well the scale factors can be generalized
using just a subset of the collects.



Table 4 - EID Percent Accuracy for Nearest Neighbor Tests
Using Averaged 18-Parameter Data

| Short-range mode | Long-range mode

Raw Data 60.6% 93.5%

Standardized 74.8% 94.0%

Standardized with Categorical Knowledge 93.3% 98.5%

Mahalanobis Distance 59.8% 58.6%

Mahalanobis Distance with Categorical Knowledge 98.5% 100.0%

4.4. 1 Method

The same number of emitters was used to form training sets (40 from long-range mode data and 42 from

short-range mode data). However, the number of emitters from the training sets used to form the scaling

factors varied from I through 30. In each of these cases, 200 trials were performed in which test sets and

training sets were randomly generated, and the appropriate number of training set collects were used to

compute scaling factors. Pulse-averaged data and all available parameters were used for EID. The Nearest

Neighbor algorithm was used. The goal was to observe how much EID accuracy degrades by using only a

subset of the collects as categorical knowledge.

4.4.2 Results

Figure 10 shows the EID accuracy as we increase the number of categories used to calculate the covari-

ance matrix for our Mahalanobis distance network. Accuracy increases dramatically up to 11 categories,

then much less up to 30 categories. Each point on the graph is an average accuracy over the 200 trials. The

results show that the scale factors do in fact generalize well but not well enough to obtain the high accuracy

seen in the previous experiment (Table 4). Such a high accuracy required that all the emitters be used to form

scaling factors.
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Fig. 10 - Percentage accuracy vs number of categories used to calculate the covariance matrix

Let us examine the correlation matrix in further detail. Table 5 lists some of the correlation coefficients.

These were taken from the Mahalanobis distance with categorical knowledge matrix cULi,, computed in

Section 2.3.5. The strong positive correlation between PRI and RF within categories is of interest; this is

depicted in Fig. 9. For comparison, PRI vs PW is also given to illustrate uncorrelated parameters.
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Note that in these results, the covariance matrix is ill-conditioned with fewer than 10 training catego-
ries, which also results in poor EID accuracy. Generally, one requires for an n x n covariance matrix,
n (n + 1)/2 points of data, and here, fewer than that are available. As shown in Fig. 10,94% accuracy can be
achieved in both data modes as up to 30 out of 40 categories become available for training.

Table 5 - Correlation Between Parameters in the Long-Range Mode Data

| PRI | RF | PW A| Al | _2_ |
PRI 1.0000 X X X X

RF 0.8450 1.0000 X X X
PW 0.0755 0.0922 1.0000 X X

Al -0.3632 -0.4564 0.3227 1.0000 X

A2 -0.2622 -0.3036 -0.1545 0.2663 1 .0000

4.5 Comparison of Different EID Algorithms

Next we compare EID accuracies obtained above with those obtainable by deployed systems. This is
done to examine how current systems can be improved. We also compare Nearest Neighbor with SuperPHC
in terms of EID speed. This is done to examine whether the conclusions in our previous work [3] regarding
SuperPHC remain valid in this study.

4.5.1 Method

The two algorithms used in baseline systems are the Matching Algorithm and the Normalized Euclidean
Metric (see Section 2). These two algorithms use only IP information. To test their effectiveness, we com-
pared them to the SuperPHC and Nearest Neighbor algorithms. Three variants of these second two algo-
rithms were used: standardized data, data standardized with categorical knowledge, and Mahalanobis dis-
tance computed with categorical knowledge. Rather than randomly selecting training and testing sets as in
the above experiments, these experiments were performed using the jackknifing strategy described in Sec-
tion 2. The experiments were performed separately with the two modes. The final EID accuracy was ob-
tained by averaging the results of two separate sizes. The comparison of EID speed between Nearest Neigh-
bor and SuperPHC was performed on the Sun Workstation. The tests for the study consisted of 150 pulse-
averaged samples for training and I through 150 pulse-averaged samples for testing. SuperPHC required
training; therefore, the training time was measured. However, to obtain a fuller appreciation of the relative
EID time for the two methods on a larger dataset, both single-pulse representation and pulse-averaged data
were used.

4.5.2 Results

Table 6 presents the final EID results obtained. We see that by using IP alone, the Matching Algorithm
and the normalized Euclidean metric can identify the emitters with 84.1 % and 85.8% accuracy, respectively.
The distance measures we used in most of our experiment yield comparable levels of accuracy. The accu-
racy improves to 91.6% by using Mahalanobis distance with categorical knowledge instead of Euclidean
distance. However, the accuracy improves substantially if we use both conventional and IP parameters-
from 91.6% to 99.3%. This implies that deployed systems can improve by using the methods developed
here. We also note that Nearest Neighbor performs slightly better than SuperPHC, but by only a small
amount (99.3% vs 98.6%).

Above we used both the Nearest Neighbor and SuperPHC algorithms for EID. As was found in a previ-
ous report [3], SuperPHC has very similar EID accuracy to Nearest Neighbor but does not exceed it. The
above results show the same pattern. Also, in the previous work it was shown that SuperPHC was signifi-
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cantly faster than Nearest Neighbor in testing, hence is ideal for certain applications. SuperPHC was also

significantly faster in EID when the training sets were more complex. Note however, that the scaleup in time

was linear for the 300 pulse-averaged representation

Table 6 - Percent Identified Correctly out of 296 Test Files

Table 7 demonstrates this effect by presenting the times for training and testing for a set of 100 to

10,000 pulses. The training time grew linearly for a small pulse set (fewer than 1000 pulses). However, for

sets larger than 1000 pulses, the training time for SuperPHC and the EID time using the Nearest Neighbor

algorithm was at least an order of magnitude slower (more than 100 s vs less than l 0 s for 1000 pulses). Note

that the EID time grew linearly for SuperPHC since training on larger collects could be done effectively

offline.

Table 7-EID Time for Nearest Neighbor and SuperPHC
on a Sun Ultra Workstation

Nearest Neighbor 100 N/A 72

10,000 N/A 702

100 3.5 1

SuperPHC 1000 7 2

_ 10,000 180 5

5. DISCUSSION

In the current study of emitter identification using field data from 42 Raytheon RX41 navigational

radars, EID accuracy exceeded 90% using IP alone when an appropriate scaling factor was used. Higher
EID rates were observed with long-range mode over the short-range mode data. With the addition of three

conventional parameters, an increase in EID accuracy was noted in both pulse-averaged and pulse-by-pulse

experiments. Overall, the accuracies quoted in the previous work [3] can be improved by either using scal-
ing factors or by adding conventional parameters. The latter validates the prediction made in Ref 4. By

All ParametersIP Alone
Matching Algorithm 84.1%

Normalized Euclidean Metric 85.8%

Standardized 81.1% 92.9%

Standardized with Categorical

SuperPHC Knowledge 87.1% 98.0%

Mahalanobis Distance with
Categorical Knowledge 89.5% 98.6%

Standardized 84.5% 93.9%

Standardized with Categorical

Nearest Neighbor Knowledge 85.1% 98.3%
Mahalanobis Distance with

Categorical Knowledge 91.6% 99.3%

Training Time (s) I Test Time (s)
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using both appropriate scaling without categorical knowledge and all (both conventional and IP) param-
eters, the overall EID accuracy exceeded 95%. A collective EID accuracy of greater than 99% was obtained
using Mahalanobis distance with categorical knowledge.

Nearest Neighbor and SuperPHC gave comparable EID rates. Increased EID rates were observed for the
long-range mode collects, but not for short-range mode collects, when using both algorithms. There are
several explanations for this fact. First of all, there are more emitters/categories in the short-range mode
collects. More categories clearly imply an increased chance of confusion during EID, Moreover, since pulses
were sampled at 6.25 ns intervals, fewer raw pulses (32 vs 64 for long-range mode collects) provide the
information for a short-range mode [3].

It has been hypothesized that the selection of a short-range mode for sampling may cut off useful dis-
criminating information located in the latter part of the pulse. The lower performances of the algorithms in
the short-range mode hash bin could be a result of this effect. However, under certain scaling conditions, no
measurable difference was observed (Table 6).

5.1 Conclusions

The following paragraphs focus on the most important points that can be drawn from the work de-
scribed above.

5.1. 1 Conventional Parameters Improve EID Accuracy

Higher EID rates were observed throughout with the addition of conventional parameters (Tables 1, 4,
and 6). This happened whether or not scaling factors were used. This validates the prediction made in Ref 5,
which predicted that accuracies approaching 99% should be achievable when all parameters were used.
Without scaling factors, the addition of conventional parameters improved EID accuracy from 72% to 93.5%
on the long-range mode data and from 57.6% to 60.6% on the short-range mode data (Table 2). When
jackknifing was used and the parameters were standardized without categorical knowledge, a collective
accuracy (short and long-range mode) rose from 84.5% with IP parameters alone to 93.9% with all param-
eters (Table 6). Similar improvements were obtained by using categorical knowledge either with standard-
ization or Mahalanobis distance. These improvements were independent of whether Nearest Neighbor or
SuperPHC was used for EID.

5.1.2 Effects of Pulse Averaging

A detailed examination of training with averaged and single pulse representation revealed effectively
no difference in accuracy gained. This was consistent with the results of the H-test. The Kruskal-Wallis H-
test showed that there is not only random variation between pulses within a collect, but that there is also a
second random process that changed the distributions of the pulse parameters between different collects of
the same emitter. This second random process seemed to change the pulses to a greater extent than account-
able by the inherent intracollect random process variation. Therefore, using individual pulses within a col-
lect did not necessarily improve EID accuracy. This was verified experimentally, where keeping track of the
distribution of collects has negligible effects on the accuracy.

One could argue from the results shown in Table 3 that single-pulse representations performed slightly
better than did pulse averages. This increase was on the order of 1% or 2%, however, and thus appears to be
relatively insignificant. Further studies would have to be performed to determine if this increase is indeed
reproducible and reliable. However, even if this increase is statistically significant, the huge increase in
required CPU time and the huge increase in neural network size may not justify this slight increase in
accuracy: comparing pulse-averaged data are approximately 15,000 times less computationally demanding
and 800 times less memory intensive.
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5.1.3 Scaling With Categorical Knowledge is Essentialfor Highly Accurate (95% to 99°/) EID

Standardizing the data certainly improves EID accuracy, as discussed above. However, highly accurate

EID requires the use of categorical knowledge with either scaling or Mahalanobis distance. Qualitatively,
this makes sense because the use of categorical knowledge makes the scaling factors more sensitive to the

statistics of individual collects rather than to the displacements between collects. Thus the "dividing lines"
set up in parameter space to discriminate between different categories are positioned in a way that is sensi-
tive to the cluster's shape. However, it is necessary to determine whether the scaling factors are generaliz-

able. We demonstrated that the scaling factors are indeed generalizable but only up to a point. Unfortunately
in many real mission scenarios there will be many collects that are previously unseen. The results here do

not guarantee that such emitters will be identified with great accuracy. If the mission scenario is such that all
emitters have been seen previously, then we know that highly accurate EID can be performed.

The EID schemes used here may be difficult to apply to other EID data. The PRIs will not always be a

two-position stagger as was the case of the emitters from this experiment. It may be much more complex,
having many more PRI legs and jitter However, if PRI is used in some other scheme, it could be made to
give a confidence factor to be combined with EID based on other parameters. Although PRI is correlated
with other parameters, it has also been shown that by proper scaling, a distance measure that does not take
this into account can also achieve similar accuracy. One example is a 1.5% difference between the Mahalanobis

distance with categorical knowledge and the standardization with categorical knowledge (Table 4).

5.1.4 Both Algorithms Have Comparable EID Accuracy

SuperPHC yields similar EID accuracy to Nearest Neighbor throughout our experiments (Tables 3 and

6). Essentially, SuperPHC shows slightly less accuracy than Nearest Neighbor over all the different permu-

tations of experiments performed. The drawback of SuperPHC is that it requires training. This is especially
true when the set consists of more than 1000 training vectors. However, we have seen that pulse averaging
yields similar results to those obtained in pulse-by-pulse training experiments (Table 3). Thus, in the pulse-

averaged case with less than 500 training vectors, Nearest Neighbor may be the algorithm of choice. This is
offset by the fact that as there are more and more training examples, Nearest Neighbor grows linearly in EID
time, but SuperPHC, since it divides the data into hierarchies, requires less time in EID. The distinct advan-
tage given by SuperPHC, as shown in our previous work [3], is that for very large databases it outperforms
Nearest Neighbor in terms of EID speed. This is observed again in Table 7.

5.1 5 Comparison with Currently Used EID Schemes

Using intrapulse parameters alone, 90% ETD accuracy was noted with Mahalanobis distance (Table 6).
This is at least 5% better than the Matching Algorithm currently used in the field [10]. Other EID schemes

using IP alone yield rates around 85%. By including all parameters, we routinely observed an accuracy
greater than 95%. Pulse-averaging reduced the training time without loss of EID accuracy. Furthermore, an

entire collect of 896 pulses can be analyzed in less than one second. Since training time is a critical factor for

a tactical ESM system, then Nearest Neighbor may be the algorithm of choice. If, however, training can be
performed offline, then SuperPHC would be beneficial with rapid EID of test pulses using simple proces-

sors.

5.2 Summary of Practical Implications

The above results can be distilled into the following practical implications:
I) Use of conventional and intrapulse parameter information improves the ID performance of matching

algorithms Also, pulse averages rather than individual pulses should be used in library development.

Yang et al.2,6
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2) ID accuracies can be improved by appropriate standardization of data.
3) If a specific mission is such that all or most of the emitters are previously unseen, categorical knowledge

can be used with standardization or Mahalanobis distance to significantly improve EID accuracy. Cat-
egorical knowledge represents library entries of previous intercepts. Thus, if emitters have been previ-
ously intercepted and entered into the library, then accuracy of EID of new intercepts is high. If emitters
have not been previously intercepted, then improper association with existing entries is relatively low
(i.e., the novelty detection is relatively good).

4) Greater than 95% EID accuracy can be achieved by appropriate standardization or by using Mahalanobis
distance with categorical knowledge can be had with either SuperPHC or Nearest Neighbor Thus both
algorithms can be deployed. SuperPHC will be of choice in a dense emitter environment if training can
be done offline.

5.3 Research Directions and Future Work

One interesting research possibility is the study of PRI angles for EID. All of the emitters collected here
were from one model, and they all had identical PRI angles. This is most likely a design feature and it is
possible that a different manufacturer of emitters would choose different PRI angles for their emitters. This
could lead to a quick method for identifying a specific emitter, which may be valuable in certain situations.

Improvements in EID accuracy in the single pulse case would be more difficult to achieve, if all pulses
were to be included; in many cases, the IP vectors were not separable or were too corrupted by noise. To
address this problem, adaptive feature extraction methods can be applied to the raw I&Q postdetector signal.
It is believed that this research will reveal better features and pulse representations to create a more effective
IP vector. This will allow finer discrimination while being more robust against noise.

Our experiments imply the following in an automatic EID system: pulse averaging is an efficient method
for rapid EID, and scaling the data improves EID accuracy. Both classifier algorithms outperformed those
currently used. Nearest Neighbor is a better choice if parallel computing is available because it uses down-
loaded data to directly update the network. SuperPHC requires training but results in a faster classifier than
does Nearest Neighbor, especially on a serial processor.
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Appendix A

SHORT-RANGE MODE COLLECT DATA

Category Collect# RF Date Time Location ID
01 590 9426.6 12 1040 PP Al
02 589 9415.5 12 1026 PP A3
03 284 9419.3 07 1044 MCT A8
03 285 9419.3 07 1044 MCT A8
04 320 9408.7 08 0820 SLA B3
04 621 9406.0 12 1606 SLA B3
05 535 9420.6 11 1047 PP B8
06 010 9423.8 01 1030 SLA CI

06 011 9423.8 01 1030 SLA Cl
06 178 9423.4 04 1604 SLA Cl
06 228 9423.5 06 0934 SLA Cl
06 417 9422.9 09 1508 SLA Cl
06 502 9422.6 10 1908 SLA Cl
06 588 9420.7 12 1010 SLA Cl
07 271 9421.8 07 0819 SLA C3
07 622 9419.7 12 1618 SLA C3
08 229 9435.4 06 0949 MCT C8
08 230 9435.4 06 0949 MCT C8
09 023 9412.3 01 1348 SLA D1
09 013 9412.9 01 1057 SLA D1
09 014 9412.9 01 1057 SLA DI
09 068 9412.1 02 1142 SLA D1
09 069 9412.1 02 1142 SLA D1
09 139 9412.8 03 1642 SLA D1
09 185 9413.4 05 0843 SLA DI
09 268 9413.8 06 1731 SLA DI
09 315 9412.3 07 1636 SLA Dl
09 323 9413.4 08 0847 SLA DI
09 427 9412.3 09 1648 SLA Dl
09 484 9411.1 10 1524 SLA DI
09 549 9412.4 11 1405 SLA Dl
10 312 9420.3 07 1606 SLA D8
10 563 9420.1 11 1532 SLA D8
11 338 9427.6 08 1034 PP E5
12 020 9426.3 01 1322 SLA Fl
12 021 9426.3 01 1322 SLA F1

12 096 9424.8 02 1631 SLA Fl

12 097 9424.8 02 1631 SLA Fl
12 198 9424.9 05 1053 SLA Fl

12 426 9425.3 09 1635 SLA Fl

12 627 9423.8 12 1702 SLA F1
12 628 9423.8 12 1702 SLA F1
13 391 9410.9 09 0841 SLA F3
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Category
13

13

13

14

14

14

15

15

15

16

16

16

16

17

18

18

18

18

18

18

18

19

19

19

20
21

21

21

21

21

21

21

21

21

21

21

21

22

23

23

23

23

23

23

23

23

23

23

24

Collect #
599
600
611

339
340
365
376
580
620
434
435
505
506
543
151

152

200
348
429
430
504
457
472
473
597
049
050
113

114
153

154
155
255
256
343
541

557
494
072
071
041

091

092
128
129
145

146
626
286

RF
9410.1
9410.1
9409.3
9427.2
9427.2
9427.5
9413.3
9415.7
9413.6
9425.4
9425.4
9424.1
9424.1
9428.9
9419.7
9419.7
9419.1
9418.2
9420.1
9420.1
9417.6
9422.4
9423.1
9423.1
9430.5
9426.1
9426.1
9428.6
9428.6
9428.6
9428.6
9428.6
9427.5
9427.5
9425.9
9426.9
9427.6
9427.0
9418.9
9418.9
9418.0
9418.6
9418.6
9419.2
9419.2
9419.5
9419.5
9417.2
9422.9

Date
12

12

12

08
08
08
08
12

12

10
10
10
10
11

04
04
05
08
10

10
10

10

10

10

12

02
02
03
03
04
04
04
06
06

08
11

11

10

02
02
01

02
02
03
03
04
04
12
07

Time
1331

1331

1454
1054
1054
1603
1850
0853
1555
0906
0906
1950
1950
1148

0955
0955
1127
1307
0817
0817
1936
1135
1408
1408
1147
0908
0908
1102
1102
1014
1014
1014
1457
1457
1125
1134
1511

1636
1305
1305
1619
1558
1558
1456
1456
0846
0846
1649
1059

Location
SLA
SLA
SLA
SB
SB
SB
SLA
SLA
SLA
MCT
MCT
MCT
MCT
SLA
PP
PP
PP
SLA
SLA
SLA
SLA
SB
SB
SB
PP
MCB
MCB
MCB
MCB
MCB
MCB
MCB
MCT
MCT
PP
PP
PP
SLA
MCT
MCT
MCT
MCT
MCT
MCT
MCT
MCT
MCT
SLA
PP

ID
F3
F3
F3
F8
F8
F8
G3
G3
G3
G8
G8
G8
G8
H8
11

11

11

11

11

11

J8
J8
J8
J8

K3
LI
LI
LI
LI
LI
LI
LI
LI
LI
LI
LI
LI
L3
Ml
Ml
Ml
Ml
Ml
Ml
Ml
Ml
M1
Ml
M8

j
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Enhanced EID Using Scaled Conventional and IP Parameters

Category Collect #
24 353
24 412
25 157
25 158
25 159

25 176
25 177
25 308
25 309
25 530
26 043
26 181

26 205
26 511
27 371
27 372
27 478
28 419
29 062
29 063
29 215
29 387
30 316
30 439
30 608
31 593

32 591
32 592
33 118

33 119

33 173

33 266
33 565
34 100
34 101

34 221
34 517
35 324
35 507
36 099
36 240
36 241
36 385
36 428
37 133

37 134

37 197

37 298
37 437

RF
9420.9
9423.7
9431.7
9431.7
9431.7
9432.9
9432.9
9427.5
9427.5
9429.2
9426.3
9425.2
9424.6
9423.9
9427.1
9427.1
9425.8
9397.4
9416.4
9416.4
9416.6
9415.5
9412.5
9414.6
9412.7
9408.8
9417.9
9417.9
9416.0
9416.0
9416.0
9416.0
9414.2
9414.7
9414.7
9414.1
9412.4
9423.5
9421.6
9415.4
9414.8
9414.8
9414.1
9414.9
9420.9
9420.9
9421.4
9419.8
9421.0

Date
08
09
04
04
04
04
04
07
07
11

02
04
05
11

08
08
10

09
02
02
05
08
07
10
12

12

12

12

03

03
04
06
11

03
03

06
11

08
10
03

06
06
08
09
03
03
05
07
010

Time Location
1405 PP
1422 PP
1047 PP
1047 PP
1047 PP
1546 PP
1546 PP
1534 PP
1534 PP
1011 PP
0807 SLA
1654 SLA
1427 SLA
0814 SLA
1819 SLA
1819 SLA
1439 SLA
1538 PP
1053 SLA
1053 SLA
1613 SLA
2002 SLA
1651 SLA
1009 SLA
1429 SLA
1114 MCT
1059 PP
1059 PP
1311 SLA
1311 SLA
1457 SLA
1659 SLA
1556 SLA
0826 SLA
0826 SLA
0814 SLA
0901 SLA
0903 SLA
2003 SLA
0809 SLA
1124 SLA
1124 SLA
1935 SLA
1702 SLA
1534 PP
1534 PP
1038 PP
1358 PP
0940 PP

4Th

ID
M8
M8
N1

Nl
Nl
Nl
Nl
Nl
Nl
NI
01
01
01
01
03
03
03
P3
Ql
QI
Ql
Ql
Q3
Q3
Q3
RI
Si
Si
TI
TI
TI
Tl
TI
WI
Wi
W1

WI
W3
W3
Xi
x1
x1
Xl
xi
Yi
Y1

Y1

Y1
Y1

dr - )
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Category Collect #
38 143

38 144

38 220
38 227
38 528
38 529
39 106
39 107
39 164
39 165
39 246
39 389
39 390
40 109
40 234
40 235
40 349
40 495
40 598
41 370
42 366

RF
9419.5
9419.5
9418.3
9418.6
9416.9
9416.9
9426.4
9426.4
9429.3
9429.3
9427.4
9429.1
9429.1
9417.3
9418.7
9418.7
9416.6
9413.9
9415
9408.2
9411.4

Date
04
04
05

06
11

11

03

03

04
04
06
09
09
03
06
06
08
10
12

08
08

Time Location
0829 SLA
0829 SLA
1713 SLA
0918 SLA
0959 SLA
0959 SLA
0933 SLA
0933 SLA
1301 SLA
1301 SLA
1215 SLA
0827 SLA
0827 SLA
1007 PP
1051 PP
1051 PP
1320 SLA
1651 SLA
1202 SLA
1704 SLA
1620 SLA

ID
Zl
Zl
Zl
Zl
Zl
Zl
JIl

Jil

JI
JIl

Jil

1l
JIl

P1

P1

P1

P1

Pi
P1

Y3
Z3
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Appendix B

LONG-RANGE MODE COLLECT DATA

Category Collect# RF Date Time Location ID
01 002 9425.6 01 0945 SLA A2
01 016 9422.1 01 1119 SLA A2

01 037 9423.3 01 1559 SLA A2
01 038 9423.3 01 1559 SLA A2
01 039 9423.3 01 1559 SLA A2
01 040 9423.3 01 1559 SLA A2
01 102 9425.1 03 0843 SLA A2
01 123 9423.6 03 1402 SLA A2
01 124 9423.6 03 1402 SLA A2
01 138 9424.4 03 1627 SLA A2
01 174 9424.8 04 1512 SLA A2
01 252 9423.4 06 1422 SLA A2
01 270 9424.4 06 1746 SLA A2
01 296 9422.7 07 1325 SLA A2
01 342 9423.3 08 1112 PP A2
01 421 9423.9 09 1553 PP A2
01 470 9424.1 10 1335 PP A2
01 534 9423.3 11 1036 PP A2
02 351 9414.1 08 1336 PP A4
02 546 9414.4 11 1320 PP A4
02 602 9414.0 12 1343 PP A4
03 295 9415.7 07 1308 MCT A9
03 375 9415.2 08 1834 MCT A9
03 384 9414.4 08 1919 MCT A9
03 425 9416.5 09 1620 MCT A9
04 503 9403.8 10 1922 SLA B4
04 576 9404.7 12 0820 SLA B4
05 491 9416.0 10 1617 PP B9
06 249 9420.0 06 1350 SLA C2
06 532 9418.7 11 1024 SLA C2
07 194 9418.5 05 1007 SLA C4
07 195 9418.5 05 1007 SLA C4
07 317 9415.8 07 1705 SLA C4
07 499 9416.7 10 1837 SLA C4
07 630 9416.1 12 1713 SLA C4
08 189 9433.0 05 0916 MCT C9
08 190 9433.0 05 0916 MCT C9
08 204 9431.6 05 1410 MCT C9
08 223 9431.8 06 0845 MCT C9
08 224 9431.8 06 0845 MCT C9
08 244 9432.0 06 1200 MCT C9
08 245 9432.0 06 1200 MCT C9
09 307 9416.3 07 1516 SLA D9
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Category Collect #
09 537
10 253

10 254
10 291

11 110

I1 267

11 413

11 575

12 418

12 616

12 618

13 328

13 362

14 272

14 497
1 5 501

16 395

16 516

1 7 042

17 201

17 214

17 259

17 431

18 450

18 483

19 587

20 073
20 074
20 075
20 104
20 105
20 135

20 147
20 148

20 199
20 213
20 264
20 265
20 551
21 273

22 045
22 046
22 047
22 087
22 088
22 089
22 103

22 115

22 156

RF
9417.2
9424.8
9424.8
9424.1
9423.0
9423.2
9422.3
9423.0
9407.7
9406.0
9405.6
9424.6
9423.6
9411.5
9409.2
9421.0
9426.4
9426.8
9422.0
9423.7
9424.4
9424.3
9424.8
9419.1
9418.1
9426.1
9424.9
9424.9
9424.9
9426.3
9426.3
9427.0
9425.2
9425.2
9426.1
9425.6
9425.8
9425.8
9422.0
9424.4
9417.0
9417.0
9417.0
9416.6
9416.6
9416.6
9417.3
9416.4
9417.5

Date Time Location
11 1058 SLA
06 1441 PP
06 1441 PP
07 1131 PP
03 1023 SLA
06 1715 SLA
09 1439 SLA
12 0806 SLA
09 1522 SLA
12 1519 SLA
12 1530 SLA
08 1003 SB
08 1515 SB
07 0835 SLA
10 1703 SLA
10 1853 MCT

09 0912 SLA
11 0848 SLA
11 1637 SLA
05 1142 SLA
05 1559 SLA
06 1547 SLA
10 0835 SLA
10 1100 SB
10 1511 SB

12 0955 PP
02 1325 MCB
02 1325 MCB
02 1325 MCB
03 0916 MCB
03 0916 MCB
03 1552 MCB
04 0903 MCB
04 0903 MCB
05 1111 MCT
05 1543 MCT
06 1640 MCT
06 1640 MCT
11 1419 PP
07 0851 SLA
02 0828 MCT
02 0828 MCT
02 0828 MCT
02 1518 MCT
02 1518 MCT
02 1518 MCT
03 0859 MCT
03 1120 MCT
04 1029 MCT

ID
D9
E9
E9
E9
F2
F2
F2
F2
F4
F4
F4
F9
F9
G4
G4
G9
H9
H9
J2
J2
J2
J2
J2
J9
J9
K4
L2
L2
L2
L2
L2
L2
L2
L2
L2
L2
L2
L2
L2
L4
M2
M2
M2
M2
M2
M2
M2
M2
M2

I
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Enhanced EID Using Scaled Conventional and IP Parameters

Category Collect #
22 579
23 257
23 398
24 058
24 131

24 132
24 359
24 480
25 051
25 052
25 054
25 175
25 211

25 260
25 498
26 444
26 604
27 048
27 120
27 121

27 388
28 322
28 488
29 064
29 065
29 219
29 614
30 369
31 066

31 067

31 090

31 345

3 1 540

32 079
32 203
32 386
33 548
34 137
34 160
34 217
34 574
34 625
34 217
35 319
35 436
35 465
36 433
37 057
37 098

RF
9415.5
9420.0
9418.4
9427.4
9429.5
9429.5
9425.9
9425.0
9418.1
9418.1
9418.1
9417.7
9417.8
9417.8
9413.5
9394.3
9393.9
9413.9
9414.4
9414.4
9413.7
9412.9
9410.6
9406.3
9406.3
9406.5
9406.6
9408.2
9414.4
9414.4
9415.2
9414.7
9414.0
9413.1
9413.5
9411.7
9418.9
9411.0
9412.0
9411.0
9410.6
9409.9
9411.0
9424.2
9423.6
9422.6
9419.0
9412.6
9413.0

Date
12

06
09
02
03

03
08
10

02
02
02
04
05
06
10

10

12

02
03

03
09
08
10
02
02
05
12
08
02
02
02
08
11

02
05
08
11

03
04
05
11

12

05
08
10
10

10

02
02

Time Location
0834 SLA
1512 PP
0926 PP
1021 PP
1513 PP
1513 PP
1447 PP
1454 PP
0926 PP
0926 PP
0926 PP
1528 PP
1512 PP
1604 PP
1718 SLA
1042 PP
1355 PP
0848 SLA
1328 SLA
1328 SLA
0811 SLA
0833 SLA
1603 SLA
1110 SLA
1110 SLA
1659 SLA
1506 MCT
1648 SLA
1126 PP
1126 PP
1540 PP
1139 PP
1119 PP
1359 SLA
1355 SLA
1949 SLA
1351 PP
1609 SLA
1120 SLA
1644 SLA
1648 SLA
1639 SLA
1644 SLA
0805 SLA
0923 SLA
1320 SLA
0848 SLA
1003 SLA
1647 SLA

ID
M2
M9
M9
N2
N2
N2
N2
N2
P2
P2
P2
P2
P2
P2
P2
P4
P4
Q2
Q2
Q2
Q2

Q4
Q4
R2
R2
R2
R2
R4
S2
S2
S2
S2
S2
T2
T2
T2
T4
U2
U2
U2
U2
U2
U2
U4
U4
U4
W4
X2
X2
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Category
37
37

38

38

39
39
39
39
39
39
40

Collect #
150
222
393
394
163

170
182
183

610
619
564

RF
9413.6
9414.3
9403.4
9403.4
9416.1
9416.2
9417.7
9417.7
9413.2
9412.8
9408.3

Date
04
06
09
09
04
04
05
05
12

12

11

Time
0937
0829
0855
0855
1151

1408
0811
0811
1440
1544
1544

Location
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA

ID
X2
X2
X4
X4
Z2
Z2
Z2
Z2
Z2
Z2
Z4
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